Spectroscopic properties of nanotube-chromophore hybrids.
نویسندگان
چکیده
Recently, individual single-walled carbon nanotubes (SWNTs) functionalized with azo-benzene chromophores were shown to form a new class of hybrid nanomaterials for optoelectronics applications. Here we use a number of experimental and computational techniques to understand the binding, orientation, and nature of coupling between chromophores and the nanotubes, all of which are relevant to future optimization of these hybrid materials. We find that the binding energy between chromophores and nanotubes depends strongly on the type of tether that is used to bind the chromophores to the nanotubes. The pyrene tethers form a much stronger attachment to nanotubes compared to anthracene or benzene rings, resulting in more than 80% retention of bound chromophores post-processing. Density functional theory (DFT) calculations show that the binding energy of the chromophores to the nanotubes is maximized for chromophores parallel to the nanotube sidewall, even with the use of tethers; optical second harmonic generation measurements show that there is nonetheless a partial radial orientation of the chromophores on the nanotubes. We find weak electronic coupling between the chromophores and the SWNTs, consistent with noncovalent binding. This weak coupling is still sufficient to quench the chromophore fluorescence through a combination of static and dynamic processes. Photoluminescence measurements show a lack of significant energy transfer from the chromophores to isolated semiconducting nanotubes.
منابع مشابه
Fluorescence quenching of dyes covalently attached to single-walled carbon nanotubes.
The development of chromophore-carbon nanotube hybrids requires efficient and accurate methods to investigate their photophysical properties. Using the ability of the fluorescence labeling of surface species (FLOSS) technique to determine the density of covalently attached dyes to the surface of single-walled carbon nanotubes (SWCNTs), the luminescence of dye-SWCNT hybrids was quantitatively st...
متن کاملColor Detection Using Chromophore-Nanotube Hybrid Devices
We present a nanoscale color detector based on a single-walled carbon nanotube functionalized with azobenzene chromophores, where the chromophores serve as photoabsorbers and the nanotube as the electronic read-out. By synthesizing chromophores with specific absorption windows in the visible spectrum and anchoring them to the nanotube surface, we demonstrate the controlled detection of visible ...
متن کاملSpectral tuning, fluorescence, and photoactivity in hybrids of photoactive yellow protein, reconstituted with native or modified chromophores.
Photoactive yellow proteins (PYPs) constitute a new class of eubacterial photoreceptors, containing a deprotonated thiol ester-linked 4-hydroxycinnamic acid chromophore. Interactions with the protein dramatically change the (photo)chemical properties of this cofactor. Here we describe the reconstitution of apoPYP with anhydrides of various chromophore analogues. The resulting hybrid PYPs, their...
متن کاملControllable preparation of metal nanoparticle/carbon nanotube hybrids as efficient dark field light scattering agents for cell imaging.
We report a novel strategy to fabricate metal nanoparticle/carbon nanotube hybrids with unique plasmon properties as well as biocompatibility and further apply them as efficient dark field light scattering agents for cancer cell imaging.
متن کاملModulating Band Gap and HOCO/LUCO Energy of Boron-Nitride Nanotubes under a Uniform External Electric Field
In this study, spectroscopic properties of the single-walled boron-nitride nanotube (SWBNNT) –a semiconductor channel in molecular diodes and molecular transistors–have been investigated under field-free and various applied electric fields by first principle methods.Our analysis shows that increasing the electric field in boron-nitride nanotube (BNNT) decreases the Highest Occupied Crystal Orbi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 5 10 شماره
صفحات -
تاریخ انتشار 2011